
PG as Recommendation
Engine

Ankit Mittal and Jon Phillips

Topics

Summary

● About Us
● Postgres as a recommendation engine
● Ingestion to support embeddings
● How to maintain stability with high ingestion

volume

Confidential

3

Instacart is the leading
grocery technology
company in North America

1400+
Retail partners across the
US and Canada

600K+
Instacart shoppers

95%+
Household coverage in US,
CA

Grocery
and Beyond

Product Retrieval
Platform Team
● Ownership of infrastructure that

powers all search and product
retrieval

● Operations, uptime and reliability of
~250 self hosted PG hosts

● Building of product retrieval read
client and ingestion system

Confidential

The Origins

5

Confidential

Terminology

Embeddings

6 Confidential

An embedding is vector (of floats and ints) representation of any real world
object. These could of embeddings of words, phrases, items, songs, videos
etc.

A machine learning model converts objects into embeddings.

Inference problems can be converted into a similarity search in embeddings
space.

Embeddings close to each other in this hyper dimensional embeddings space
are similar to each other.

Confidential

Similarity Search

7

Confidential

There and
Back Again

8

PG as Recommendation
Engine

In production since 2019

10

Search
Architecture in
One Line

Whenever a search
command is issued on the
storefront, a single
postgres query uses
tsvector to perform
keyword search and an
embedding based
personalization ranker. *

Confidential

Search Architecture

Confidential

12

Product Retrieval Cluster

● The cluster is designed to be a write ahead cache*
○ Clients only have read only access
○ Writes are written by specific workers pipelining the row

upserts from source of truth
○ Replica sets have staggered replication lag (0, 5, 10) minutes.

Giving our cluster an eventually consistent flavour
○ Local NVMes as disk, high shared buffers usage

● Replica is never promoted, handles primary loss by serving stale
data while primary is rebuilt

Confidential

13

Topology Diagram

Confidential

14

Staggered Replica Lag?

●

Confidential

15

Staggered Replica Lag?

● Migrations / DDL locks
○ A mistake, bad migration that grabs locks for long

● Vacuums on certain pg-catalog tables would lock them
● recovery_min_apply_delay

Confidential

16

Outside Postgres

● Training
● Parameter and Hyperparameter tuning of ML models
● Combining Embedding-based retrieved candidates and

keyword based candidates
● Query understanding

Confidential

17

Within Postgres

● Indexing trained model via MERGE-like command
● TSVector keyword based search
● Dot product (KNN) of user and product embeddings
● Ranking for both Embedding-based and keyword based

candidates based on dot product scores
● Joins for inventory availability, CTRs and many other

ML-generated scorings for ranking

Confidential

● ANN is an approximate algorithm that trades
offs accuracy for speed

● ANN latency grows slowly, needed for similarity
search >1k records

● Consequently ranking already retrieved search
(100-500 items) set according to
personalization embeddings can be done by
KNN

Terminology

K-nearest neighbour vs
Approximate Nearest Neighbor

18 Confidential

Confidential

19

KNN Extension

Confidential

Why

Model Update Speed Development Velocity Minimal Data Transfers

20

CTRs and Continuous
Improvement

More Flexibility Availability Machine

Confidential

21

Why

● Five nines reliability
● Faster and more reliable data

pipeline for retailer information
● Much better p99 latency than

our previous architecture
○ 80% reduction per API call
○ Reduced API calls due to

availability joins

Who is Instacart?

Confidential

Ingestion
Dealing with dead tuples and herding cats

Confidential

15 Billion Writes
Per Day

Some Numbers

Confidential

How do we ingest
15b records a
day?

Confidential

1. Shard the data
2. Copy + on-conflict bulk

upserts

Two strategies

Confidential

Store Front Sharding
Region Sharding
Omni Sharding

Sharding Strategy

Confidential

Each strategy allows us to isolate
primaries and group data
according to query patterns

Sharding Strategy

Store Front
Prices
Availability
Sale information

Region
Cross-retailer search
Aggregate searches

Omni
Isolated non-joined tables
Shard key and mapping lookups

Confidential

Defining Sharding Strategies

Model
MetaData

Sharding
Rules

Confidential

● Sharding strategies are immutable
per cluster

● Shards must receive enough traffic to
keep buffers warm

Sharding Strategies Continued

Confidential

1. Teams write CSVs to S3
2. Each file is streamed and split based on

the sharding strategies defined for that
model

3. Then each split file is written to a postgres
instance

How do we write sharded data?

Confidential

Copy + On Conflict Upserts

● Check if unlogged_table exists (create if it
doesn’t exist)

● Stream contents of s3 csv file to
unlogged_tabe

● Insert contents of unlogged_table to actual
table

● Delete rows in unlogged_table
● On errors, individually upsert directly to

table row by row

COPY #{unlogged_table_name}
(#{columns.join(', ')})
 FROM STDIN

 WITH (FORMAT csv,

HEADER false, NULL '\\N',

FORCE_NULL (#{columns.join(',

')}));

 INSERT INTO #{table_name}
(#{columns.join(',')})
 SELECT DISTINCT ON
(#{import_key})
columns.join(',')}
 FROM
#{unlogged_table}

#{order_by_incremental(model)}
 ON CONFLICT
(#{import_key}) DO UPDATE SET
 #{columns}
 WHERE
(#{columns.map { |c|
"#{table_name}.#{c} IS DISTINCT
FROM excluded.#{c}" }.join(' OR
')})

#{where_incremental_is_newer}

Confidential

Preserving MVCC
Unlogged tables and dead tuples

Upsert Table Gotchas With High Volume

Confidential

Catalog 4%

ML 96%

Who owns these writes?

Confidential

Why does this
matter?

Confidential

35

Why does this matter?

● Teams have different ingestion requirements
● Ingestion needs to be prioritized by team based and the

importance of the data
● Batches have drastically different load characteristics

Confidential

Stability of the
front end services
must be
maintained

They all have one thing in common

Dead Tuples
Table Bloat and DB performance

Confidential

If you stack two
lasagnas, you
have one tall
lasagna

Confidential

Dead tuple risks

● Disk usage
● Autovacuum can not keep up with new writes
● Ingestion throughput goes down
● Slows down sequential scans
● Causes poor query plans and slows down queries

Addressing Bloat
Autovacuum
pg_repack

Power
Repack
How we tune dead tuple cleanup

What is
power
repack?
Power repack is our pg_repack orchestrator. It keeps tabs on dead tuples and
kicks off pg_repacks. It is aware of table-specific overrides.

Confidential

Teams define
rules that
selectively prune
stale content.

Power Repack

Confidential

Power Repack’s
extended capabilities

Confidential

45

Issues with repacking
Things to keep in mind

● There must be enough headroom at all
times to run repack (based on the largest
table and its indices)

● If possible, pause ingestion to the repacking
table. High throughput ingestion can delay
repacks by several hours because data is
effectively written twice. Pausing ingestion
reduces the time to minutes.

Confidential

Postgres as complex objects engine

46

Postgres as a place to

● Store complex objects
● Compare complex objects

Michael Stonebaker’s original postgres theis. This was one
of the fundamental design goals of Postgres

Thank you!
Oct 3 2023

