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Topics

Summary

● About Us
● Postgres as a recommendation engine
● Ingestion to support embeddings
● How to maintain stability with high ingestion 

volume
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Instacart is the leading 
grocery technology 
company in North America

1400+
Retail partners across the 
US and Canada

600K+
Instacart shoppers

95%+
Household coverage in US, 
CA

Grocery
and Beyond



Product Retrieval  
Platform Team
● Ownership of infrastructure that 

powers all search and product 
retrieval 

● Operations, uptime and reliability of 
~250 self hosted PG hosts 

● Building of product retrieval read 
client and ingestion system
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The Origins
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Terminology

Embeddings
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An embedding is vector (of floats and ints) representation of any real world 
object. These could of embeddings of words, phrases, items, songs, videos 
etc.

A machine learning model converts objects into embeddings. 

Inference problems can be converted into a similarity search in embeddings 
space.  

Embeddings close to each other in this hyper dimensional embeddings space 
are similar to each other. 
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Similarity Search 
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There and 
Back Again
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PG as Recommendation 
Engine

In production since 2019
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Search 
Architecture in 
One Line

Whenever a search 
command is issued on the 
storefront, a single 
postgres query uses 
tsvector to perform 
keyword search and an 
embedding based 
personalization ranker. *
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Search Architecture
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Product Retrieval Cluster 

● The cluster is designed to be a write ahead cache* 
○ Clients only have read only access
○ Writes are written by specific workers pipelining the row 

upserts from source of truth
○ Replica sets have staggered replication lag (0, 5, 10) minutes. 

Giving our cluster an eventually consistent flavour
○ Local NVMes as disk, high shared buffers usage

● Replica is never promoted, handles primary loss by serving stale 
data while primary is rebuilt
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Topology Diagram
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Staggered Replica Lag?

●
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Staggered Replica Lag?

● Migrations / DDL locks
○ A mistake, bad migration that grabs locks for long

● Vacuums on certain pg-catalog tables would lock them
● recovery_min_apply_delay
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Outside Postgres

● Training
● Parameter and Hyperparameter tuning of ML models
● Combining Embedding-based retrieved candidates and 

keyword based candidates
● Query understanding
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Within Postgres

● Indexing trained model via MERGE-like command 
● TSVector keyword based search
● Dot product (KNN) of user and product embeddings
● Ranking for both Embedding-based and keyword based 

candidates based on dot product scores
● Joins for inventory availability, CTRs and many other 

ML-generated scorings for ranking
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● ANN is an approximate algorithm that trades 
offs accuracy for speed

● ANN latency grows slowly, needed for similarity 
search >1k records

● Consequently ranking already retrieved search 
(100-500 items) set according to 
personalization embeddings can be done by 
KNN

Terminology

K-nearest neighbour vs 
Approximate Nearest Neighbor
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KNN Extension



Confidential

Why

Model Update Speed Development Velocity Minimal Data Transfers 
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CTRs and Continuous 
Improvement

More Flexibility Availability Machine



Confidential
 
21

Why

● Five nines reliability 
● Faster and more reliable data 

pipeline for retailer information
● Much better p99 latency than 

our previous architecture 
○ 80% reduction per API call
○ Reduced API calls due to 

availability joins

Who is Instacart?
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Ingestion
Dealing with dead tuples and herding cats
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15 Billion Writes 
Per Day

Some Numbers
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How do we ingest 
15b records a 
day?
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1. Shard the data
2. Copy + on-conflict bulk 

upserts 

Two strategies
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Store Front Sharding
Region Sharding
Omni Sharding

Sharding Strategy
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Each strategy allows us to isolate 
primaries and group data 
according to query patterns

Sharding Strategy

Store Front
Prices
Availability
Sale information

Region
Cross-retailer search
Aggregate searches

Omni
Isolated non-joined tables
Shard key and mapping lookups
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Defining Sharding Strategies

Model 
MetaData

Sharding 
Rules



Confidential

● Sharding strategies are immutable 
per cluster

● Shards must receive enough traffic to 
keep buffers warm

Sharding Strategies Continued
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1. Teams write CSVs to S3
2. Each file is streamed and split based on 

the sharding strategies defined for that 
model

3. Then each split file is written to a postgres 
instance

How do we write sharded data?
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Copy + On Conflict Upserts

● Check if unlogged_table exists (create if it 
doesn’t exist)

● Stream contents of s3 csv file to 
unlogged_tabe

● Insert contents of unlogged_table to actual 
table

● Delete rows in unlogged_table
● On errors, individually upsert directly to 

table row by row

COPY #{unlogged_table_name} 
(#{columns.join(', ')})
          FROM STDIN

          WITH (FORMAT csv, 

HEADER false, NULL '\\N', 

FORCE_NULL (#{columns.join(', 

')}));

    INSERT INTO #{table_name} 
(#{columns.join(',')})
              SELECT DISTINCT ON 
(#{import_key}) 
columns.join(',')}
              FROM 
#{unlogged_table}
              
#{order_by_incremental(model)}
              ON CONFLICT 
(#{import_key}) DO UPDATE SET
              #{columns}
              WHERE 
(#{columns.map { |c| 
"#{table_name}.#{c} IS DISTINCT 
FROM excluded.#{c}" }.join(' OR 
')})

              

#{where_incremental_is_newer}
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Preserving MVCC
Unlogged tables and dead tuples

Upsert Table Gotchas With High Volume
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Catalog 4%

ML 96%

Who owns these writes?
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Why does this 
matter?
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Why does this matter?

● Teams have different ingestion requirements
● Ingestion needs to be prioritized by team based and the 

importance of the data
● Batches have drastically different load characteristics
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Stability of the 
front end services 
must be 
maintained

They all have one thing in common



Dead Tuples
Table Bloat and DB performance
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If you stack two 
lasagnas, you 
have one tall 
lasagna 
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Dead tuple risks

● Disk usage
● Autovacuum can not keep up with new writes
● Ingestion throughput goes down
● Slows down sequential scans
● Causes poor query plans and slows down queries



Addressing Bloat
Autovacuum
pg_repack



Power 
Repack
How we tune dead tuple cleanup



What is 
power 
repack?
Power repack is  our pg_repack orchestrator. It keeps tabs on dead tuples and 
kicks off pg_repacks. It is aware of table-specific overrides. 
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Teams define 
rules that 
selectively prune 
stale content.

Power Repack
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Power Repack’s 
extended capabilities
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Issues with repacking
Things to keep in mind

● There must be enough headroom at all 
times to run repack (based on the largest 
table and its indices)

● If possible, pause ingestion to the repacking 
table.  High throughput ingestion can delay 
repacks by several hours because data is 
effectively written twice.  Pausing ingestion 
reduces the time to minutes.
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Postgres as complex objects engine
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Postgres as a place to

● Store complex objects
● Compare complex objects

Michael Stonebaker’s original postgres theis. This was one 
of the fundamental design goals of Postgres 



Thank you!
Oct 3 2023


